Search results
Results from the WOW.Com Content Network
The joule (/ dʒuːl / JOOL, or / dʒaʊl / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force. It is also the energy dissipated as heat when an electric current of ...
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units. An energy unit that is used in atomic ...
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [ 1 ][ 2 ][ 3 ] It is used to quantify the rate of energy transfer.
Thus, one joule is one watt-second, and 3600 joules equal one watt-hour. The CGS energy unit is the erg and the imperial and US customary unit is the foot pound . Other energy units such as the electronvolt , food calorie or thermodynamic kcal (based on the temperature change of water in a heating process), and BTU are used in specific areas of ...
Power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. Power is a scalar quantity. Specifying power in particular systems may require attention to other quantities; for example, the power involved in moving a ground vehicle is the ...
James Prescott Joule FRS FRSE (/ dʒuːl /; [1][2][a] 24 December 1818 – 11 October 1889) was an English physicist, mathematician and brewer, born in Salford, Lancashire. Joule studied the nature of heat, and discovered its relationship to mechanical work. This led to the law of conservation of energy, which in turn led to the development of ...
Joule heating does not occur in superconducting materials, as these materials have zero electrical resistance in the superconducting state. Resistors create electrical noise, called Johnson–Nyquist noise. There is an intimate relationship between Johnson–Nyquist noise and Joule heating, explained by the fluctuation-dissipation theorem.
The Joule effect (during Joule expansion), the temperature change of a gas (usually cooling) when it is allowed to expand freely. The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.