Search results
Results from the WOW.Com Content Network
In a guideline issued in mid-1966, [49] the U.S. Office of the Federal Coordinator for Meteorology determined that weather data should be rounded to the nearest round number, with the "round half up" tie-breaking rule. For example, 1.5 rounded to integer should become 2, and −1.5 should become −1.
This remained the standard [4] in mathematics until Kenneth E. Iverson introduced, in his 1962 book A Programming Language, the names "floor" and "ceiling" and the corresponding notations ⌊x⌋ and ⌈x⌉. [5] [6] (Iverson used square brackets for a different purpose, the Iverson bracket notation.) Both notations are now used in mathematics ...
A round number is mathematically defined as an integer which is the product of a considerable number of comparatively small factors [12] [13] as compared to its neighboring numbers, such as 24 = 2 × 2 × 2 × 3 (4 factors, as opposed to 3 factors for 27; 2 factors for 21, 22, 25, and 26; and 1 factor for 23).
For a number written in scientific notation, this logarithmic rounding scale requires rounding up to the next power of ten when the multiplier is greater than the square root of ten (about 3.162). For example, the nearest order of magnitude for 1.7 × 10 8 is 8, whereas the nearest order of magnitude for 3.7 × 10 8 is 9.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
There are two common rounding rules, round-by-chop and round-to-nearest. The IEEE standard uses round-to-nearest. Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there ...
e=5; s=1.234571 − e=5; s=1.234567 ----- e=5; s=0.000004 e=−1; s=4.000000 (after rounding and normalization) The floating-point difference is computed exactly because the numbers are close—the Sterbenz lemma guarantees this, even in case of underflow when gradual underflow is supported.
Nearest integer function: if x is a real number, ⌊ ⌉ is the integer that is the closest to x. Open interval : If a and b are real numbers, − ∞ {\displaystyle -\infty } , or + ∞ {\displaystyle +\infty } , and a < b {\displaystyle a<b} , then ] a , b [ {\displaystyle ]a,b[} denotes the open interval delimited by a and b.