Search results
Results from the WOW.Com Content Network
The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke characters of number fields. The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke eigenforms.
The statistics of the zero distributions are of interest because of their connection to problems like the generalized Riemann hypothesis, distribution of prime numbers, etc. The connections with random matrix theory and quantum chaos are also of interest. The fractal structure of the distributions has been studied using rescaled range analysis. [2]
More recent work by Alain Connes has gone much further into the functional-analytic background, providing a trace formula the validity of which is equivalent to such a generalized Riemann hypothesis. A slightly different point of view was given by Meyer (2005), who derived the explicit formula of Weil via harmonic analysis on adelic spaces.
The Riemann hypothesis is one of the most important conjectures in mathematics.It is a statement about the zeros of the Riemann zeta function.Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function.
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
In mathematics, the Riemann hypothesis, proposed by Bernhard Riemann , is a conjecture that the non-trivial zeros of the Riemann zeta function all have real part 1/2. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields .
the Riemann hypothesis is equivalent to the statement that > for every positive integer . The numbers (sometimes defined with a slightly different normalization) are called Keiper-Li coefficients or Li coefficients. They may also be expressed in terms of the non-trivial zeros of the Riemann zeta function:
Riesz showed that the Riemann hypothesis is equivalent to the claim that the above is true for any e larger than /. [1] In the same paper, he added a slightly pessimistic note too: « Je ne sais pas encore decider si cette condition facilitera la vérification de l'hypothèse » ("I can't decide if this condition will facilitate the ...