Search results
Results from the WOW.Com Content Network
The D flip-flop is widely used, and known as a "data" flip-flop. The D flip-flop captures the value of the D-input at a definite portion of the clock cycle (such as the rising edge of the clock). That captured value becomes the Q output. At other times, the output Q does not change. [23] [24] The D flip-flop can be viewed as a memory cell, a ...
The circuit can be broken down into 3 parts: data-transition look ahead, pulse generator, and clock generator. The pulse generator output is fed into the clock generator which is used to clock the D flip-flop. Based on the input and output signals, if there is a need to change the state of the D flip-flop, then the clock is allowed to switch to ...
quad D flip-flops, clear 16 SN74LS171: 74x172 1 16-bit multiple port register file (8x2) three-state: 24 SN74172: 74x173 4 quad D flip-flop, asynchronous clear three-state: 16 SN74LS173A: 74x174 6 hex D flip-flop, common asynchronous clear 16 SN74LS174: 74x175 4 quad D edge-triggered flip-flop, complementary outputs and asynchronous clear 16 ...
Synchronizer circuits are used to reduce the likelihood of metastability when receiving an asynchronous input or when transferring signals between different clock domains. Synchronizers may take the form of a cascade of D flip-flops (e.g. the shift register in Figure 3). [7]
D: Q; where: Dff is D-input of D-type flip-flop, D is module information input (without CE input), Q is D-type flip-flop output. This type of clock gating is race condition free and is preferred for FPGA designs. For FPGAs every D-type flip-flop has an additional CE input signal.
A shift register is a type of digital circuit using a cascade of flip-flops where the output of one flip-flop is connected to the input of the next. They share a single clock signal, which causes the data stored in the system to shift from one location to the next.
A multivibrator is an electronic circuit used to implement a variety of simple two-state [1] [2] [3] devices such as relaxation oscillators, timers, latches and flip-flops.The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I.
Flip-flop excitation tables [ edit ] In order to complete the excitation table of a flip-flop , one needs to draw the Q(t) and Q(t + 1) for all possible cases (e.g., 00, 01, 10, and 11), and then make the value of flip-flop such that on giving this value, one shall receive the input as Q(t + 1) as desired.