Search results
Results from the WOW.Com Content Network
The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. [1] It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation.
The most significant criticism of the hypothesis was its apparent inability to explain the Sun's relative lack of angular momentum when compared to the planets. [6] However, since the early 1980s studies of young stars have shown them to be surrounded by cool discs of dust and gas, exactly as the nebular hypothesis predicts, which has led to ...
In 1960, 1963, and 1978, [13] W. H. McCrea proposed the protoplanet hypothesis, in which the Sun and planets individually coalesced from matter within the same cloud, with the smaller planets later captured by the Sun's larger gravity. [8] It includes fission in a protoplanetary nebula and excludes a solar nebula.
The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called accretion.
The hypothesis was based on the idea that a star passed close enough to the sun early in its life to cause tidal bulges to form on its surface, which along with the internal process that leads to solar prominences, caused material to be ejected repeatedly from the sun. Due to the gravitational effects of the passing star, two spiral-like arms ...
Small planets undergo Type I disk migration driven by torques arising from Lindblad and co-rotation resonances. Lindblad resonances excite spiral density waves in the surrounding gas, both interior and exterior of the planet's orbit. In most cases, the outer spiral wave exerts a greater torque than does the inner wave, causing the planet to ...
A portion of the theory stating that smaller objects — planetesimals — gradually collided to build the planets by accretion is still well-regarded. From his theories and other geological evidence he concluded that Earth was much older than assumed by Lord Kelvin (ca 100 million years) at the time. His speculations about the source of energy ...
The new theory modified the predicted orbits of all planets, but the magnitude of the differences from Newtonian theory diminishes rapidly as one gets farther from the Sun. Also, Mercury's fairly eccentric orbit makes it much easier to detect the perihelion shift than is the case for the nearly circular orbits of Venus and Earth.