Search results
Results from the WOW.Com Content Network
A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in ...
A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...
abscissa-axis (horizontal) coordinate, ordinate-axis (vertical) coordinate. Usually these are the horizontal and vertical coordinates of a point in plane, the rectangular coordinate system. An ordered pair consists of two terms—the abscissa (horizontal, usually x) and the ordinate (vertical, usually y)—which define the location of a point ...
In Cartesian coordinates (x, y, z), let the region y < 0 have refractive index n 1, intrinsic admittance Y 1, etc., and let the region y > 0 have refractive index n 2, intrinsic admittance Y 2, etc. Then the xz plane is the interface, and the y axis is normal to the interface (see diagram).
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.
A glide reflection line parallel to a true reflection line already implies this situation. This corresponds to wallpaper group cm. The translational symmetry is given by oblique translation vectors from one point on a true reflection line to two points on the next, supporting a rhombus with the true reflection line as one of the diagonals. With ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!