enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stacking-fault energy - Wikipedia

    en.wikipedia.org/wiki/Stacking-fault_energy

    The two primary methods of deformation in metals are slip and twinning. Slip occurs by dislocation glide of either screw or edge dislocations within a slip plane. Slip is by far the most common mechanism. Twinning is less common but readily occurs under some circumstances. Twinning occurs when there are not enough slip systems to accommodate ...

  3. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.

  4. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    PSB structure (adopted from [7]). Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8]) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure.

  5. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    A slip system describes the set of symmetrically identical slip planes and associated family of slip directions for which dislocation motion can easily occur and lead to plastic deformation. The magnitude and direction of slip are represented by the Burgers vector , b .

  6. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    Sample deformation mechanism map for a hypothetical material. Here there are three main regions: plasticity, power law creep, and diffusional flow. A deformation mechanism map is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions. The technique is applicable to all crystalline materials ...

  7. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    In a polycrystalline metal, grain size has a tremendous influence on the mechanical properties. Because grains usually have varying crystallographic orientations, grain boundaries arise. While undergoing deformation, slip motion will take place. Grain boundaries act as an impediment to dislocation motion for the following two reasons: 1.

  8. Zirconium alloys - Wikipedia

    en.wikipedia.org/wiki/Zirconium_alloys

    They found that T1 twinning was the dominant slip system at room temperature for strain rates between 10 −3 and 10 3 s −1. The basal slip did not contribute to deformation below 400°C. Twinning was found to be rate insensitive, and the rate sensitivity of slip could explain changes in twinning behaviour as a function of strain rate.

  9. Frank–Read source - Wikipedia

    en.wikipedia.org/wiki/Frank–Read_source

    In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, dislocations must be generated in the material.