Search results
Results from the WOW.Com Content Network
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
, column effective length factor; This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect ...
The K-factor formula does not take the forming stresses into account but is simply a geometric calculation of the location of the neutral line after the forces are applied and is thus the roll-up of all the unknown (error) factors for a given setup. The K-factor depends on many variables including the material, the type of bending operation ...
The system stiffness matrix K is square since the vectors R and r have the same size. In addition, it is symmetric because k m {\displaystyle \mathbf {k} ^{m}} is symmetric. Once the supports' constraints are accounted for in (2), the nodal displacements are found by solving the system of linear equations (2), symbolically:
K factor (crude oil refining), a system for classifying crude oil; K-factor (fire protection), formula used to calculate the discharge rate from a fire system nozzle; K-factor (metalurgy), formulae used to calculate the bending capacity of sheet metal; K factor (traffic engineering), the proportion of annual average daily traffic occurring in ...
In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...
This unbalanced moment is distributed to members BA and BC in accordance with the distribution factors = and =. Step 2 ends with carry-over of balanced moment M B C = 3.867 k N m {\displaystyle M_{BC}=3.867\mathrm {\,kN\,m} } to joint C. Joint A is a roller support which has no rotational restraint, so moment carryover from joint B to joint A ...
Building codes determine the maximum deflection, usually as a fraction of the span e.g. 1/400 or 1/600. Either the strength limit state (allowable stress) or the serviceability limit state (deflection considerations among others) may govern the minimum dimensions of the member required.