Search results
Results from the WOW.Com Content Network
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
The scalar control has been to a large degree replaced in high-performance motors by vector control that enables better handling of the transient processes. [1] Low cost and simplicity keeps the scalar control in the majority of low-performance motors, despite inferiority of its dynamic performance; [ 3 ] vector control is expected to become ...
Automatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once.
Space vector modulation (SVM) is an algorithm for the control of pulse-width modulation (PWM), invented by Gerhard Pfaff, Alois Weschta, and Albert Wick in 1982. [1] [2] It is used for the creation of alternating current (AC) waveforms; most commonly to drive 3 phase AC powered motors at varying speeds from DC using multiple class-D amplifiers.
The intermediate DC circuit's voltage variation is automatically taken into account in the algorithm (in voltage integration). Thus no problems exist due to dc voltage ripple or dc voltage transients; Synchronization to rotating machine is straightforward due to the fast control; Just make the torque reference zero and start the inverter. The ...
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
Optimal control is a particular control technique in which the control signal optimizes a certain "cost index": for example, in the case of a satellite, the jet thrusts needed to bring it to desired trajectory that consume the least amount of fuel. Two optimal control design methods have been widely used in industrial applications, as it has ...
The standard approach to control systems design is organized in two-steps: . Model identification aims at estimating a nominal model of the system ^ = (; ^), where is the unit-delay operator (for discrete-time transfer functions representation) and ^ is the vector of parameters of identified on a set of data.