Search results
Results from the WOW.Com Content Network
In a ferromagnetic core inductor, when the magnetic field approaches the level at which the core saturates, the inductance will begin to change, it will be a function of the current (). Neglecting losses, the energy W {\displaystyle W} stored by an inductor with a current I 0 {\displaystyle I_{0}} passing through it is equal to the amount of ...
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
Where the Laplace-domain transfer functions and impedances in the above expressions are defined as follows: H(s) is the transfer function with the extra element present. H ∞ (s) is the transfer function with the extra element open-circuited. H 0 (s) is the transfer function with the extra element short-circuited. Z(s) is the impedance of the ...
The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).
LC circuits are used either for generating signals at a particular frequency, or picking out a signal at a particular frequency from a more complex signal; this function is called a bandpass filter. They are key components in many electronic devices, particularly radio equipment, used in circuits such as oscillators , filters , tuners and ...
These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform .
The impulse response for each voltage is the inverse Laplace transform of the corresponding transfer function. It represents the response of the circuit to an input voltage consisting of an impulse or Dirac delta function. The impulse response for the capacitor voltage is