Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Figure 3: (Left) Ball in a circular motion – rope provides centripetal force to keep the ball in a circle (Right) Rope is cut and the ball continues in a straight line with the velocity at the time of cutting the rope, in accord with Newton's law of inertia, because centripetal force is no longer there.
This reaction force is sometimes described as a centrifugal inertial reaction, [44] [45] that is, a force that is centrifugally directed, which is a reactive force equal and opposite to the centripetal force that is curving the path of the mass. The concept of the reactive centrifugal force is sometimes used in mechanics and engineering.
In a two-body rotation, such as a planet and moon rotating about their common center of mass or barycentre, the forces on both bodies are centripetal. In that case, the reaction to the centripetal force of the planet on the moon is the centripetal force of the moon on the planet. [6]
Newton showed that a force is central if and only if the particle sweeps out equal areas in equal times as measured from the center. Newton's derivation begins with a particle moving under an arbitrary central force F 1 ( r ); the motion of this particle under this force is described by its radius r ( t ) from the center as a function of time ...
It is only in very special circumstances that the vector of the centripetal force and the centrifugal term drop away against each other at every distance from the center of rotation. This is the case if and only if the centripetal force is a harmonic force. In this case, only the Coriolis term remains in the equation of motion.
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
The experimental determination of a body's center of mass makes use of gravity forces on the body and is based on the fact that the center of mass is the same as the center of gravity in the parallel gravity field near the earth's surface. The center of mass of a body with an axis of symmetry and constant density must lie on this axis.