Search results
Results from the WOW.Com Content Network
The reactive centrifugal force on the other hand is the force the ball exerts on the string, placing it under tension. Unlike the inertial force known as centrifugal force, which exists only in the rotating frame of reference, the reactive force is a real Newtonian force that is observed in any reference frame. The two forces will only have the ...
This reaction force is sometimes described as a centrifugal inertial reaction, [44] [45] that is, a force that is centrifugally directed, which is a reactive force equal and opposite to the centripetal force that is curving the path of the mass. The concept of the reactive centrifugal force is sometimes used in mechanics and engineering.
What is experienced by the physically rotating observer is the centripetal force and the physical effect arising from his own inertia. The effect arising from inertia is referred to as reactive centrifugal force. Whether or not the effects from inertia are attributed to a fictitious centrifugal force is a matter of choice.
The centripetal force on the car is now also transferred to the suitcase and the situation of Newton's third law comes into play, with the centripetal force as the action part and with the so-called reactive centrifugal force as the reaction part. The reactive centrifugal force is also due to the inertia of the suitcase. Now however the inertia ...
Newton objected to Leibniz's equation on the grounds that it allowed for the centrifugal force to have a different value from the centripetal force, arguing on the basis of his third law of motion, that the centrifugal force and the centripetal force must constitute an equal and opposite action-reaction pair.
It is the perpendicular force exerted on the contents of the rotor as a result of the rotation, always relative to the gravity of the Earth, which measures the strength of rotors of different types and sizes. For instance, the RCF of 1000 x g means that the centrifugal force is 1000 times stronger than the Earth's gravitational force.
In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.
The 'reactive centrifugal force' will not in general be equal to the pure inertial force that causes it. The 'reactive centrifugal force' will always equate to the centripetal force, where such centripetal force has been induced by an inertial centrifugal force causing an object to press or pull against another object. See the comments below.