Search results
Results from the WOW.Com Content Network
Archimedes then proceeds to locate the centre of gravity of the parallelogram and the triangle, ending book one with a proof on the centre of gravity of the trapezium. On the Equilibrium of Planes II shares the same subject matter as the first book but was most likely written at a later date. It contains ten propositions regarding the centre of ...
Archimedes did not admit the method of indivisibles as part of rigorous mathematics, and therefore did not publish his method in the formal treatises that contain the results. In these treatises, he proves the same theorems by exhaustion, finding rigorous upper and lower bounds which both converge to the answer required. Nevertheless, the ...
A page from Archimedes' On Conoids and Spheroids. On Conoids and Spheroids (Ancient Greek: Περὶ κωνοειδέων καὶ σφαιροειδέων) is a surviving work by the Greek mathematician and engineer Archimedes (c. 287 BC – c. 212 BC).
The Archimedes Palimpsest is a parchment codex palimpsest, originally a Byzantine Greek copy of a compilation of Archimedes and other authors. It contains two works of Archimedes that were thought to have been lost (the Ostomachion and the Method of Mechanical Theorems ) and the only surviving original Greek edition of his work On Floating ...
Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...
Archimedes' On The Measurement Of The Circle; Diophantus Of Alexandria: A Study In The History Of Greek Algebra; The Thirteen Books of Euclid's Elements: vol. 1, vol. 2, vol. 3; The Thirteen Books of Euclid's Elements - Second Edition Revised with Additions: Vol. 1-3; PDF files of many of Heath's works, including those on Diophantus, Apollonius ...
Archimedes used an inscribed half-polygon in a semicircle, then rotated both to create a conglomerate of frustums in a sphere, of which he then determined the volume. [5] It seems that this is not the original method Archimedes used to derive this result, but the best formal argument available to him in the Greek mathematical tradition.
The first page of the Book of Lemmas as seen in The Works of Archimedes (1897).. The Book of Lemmas or Book of Assumptions (Arabic Maʾkhūdhāt Mansūba ilā Arshimīdis) is a book attributed to Archimedes by Thābit ibn Qurra, though the authorship of the book is questionable.