enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.

  3. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...

  4. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones. This process of finding a derivative is known as differentiation. [29]

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    Using that the logarithm of a product is the sum of the logarithms of the factors, the sum rule for derivatives gives immediately ⁡ = = ⁡ (). The last above expression of the derivative of a product is obtained by multiplying both members of this equation by the product of the f i . {\displaystyle f_{i}.}

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  9. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    In summary, both derivatives and logarithms have a product rule, a reciprocal rule, a quotient rule, and a power rule (compare the list of logarithmic identities); each pair of rules is related through the logarithmic derivative.