Search results
Results from the WOW.Com Content Network
In the equation, m 1 and σ 1 represent the mass and surface tension of the reference fluid and m 2 and σ 2 the mass and surface tension of the fluid of interest. If we take water as a reference fluid, = If the surface tension of water is known which is 72 dyne/cm, we can calculate the surface tension of the specific fluid from the equation.
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
(σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]
Here σ is the surface tension, n, t and s are unit vectors in a local orthogonal coordinate system (n,t,s) at the free surface (n is outward normal to the free surface while the other two lie in the tangential plane and are mutually orthogonal). The indices 'l' and 'g' denote liquid and gas, respectively and K is the curvature of the free surface.
A classical torsion wire-based du Noüy ring tensiometer. The arrow on the left points to the ring itself. The most common correction factors include Zuidema–Waters correction factors (for liquids with low interfacial tension), Huh–Mason correction factors (which cover a wider range than Zuidema–Waters), and Harkins–Jordan correction factors (more precise than Huh–Mason, while still ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Disturbed free surface of a sea, viewed from below. In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, [1] such as the interface between two homogeneous fluids. [2] An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere (gas mixture).