enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet was originally described in SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. [1] AlexNet is a deep neural network that has 240 MB of parameters, and SqueezeNet has just 5 MB of parameters. This small model size can more easily fit into computer memory and can more easily be transmitted over a ...

  5. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    More abstractly, learning curves plot the difference between learning effort and predictive performance, where "learning effort" usually means the number of training samples, and "predictive performance" means accuracy on testing samples. [3] Learning curves have many useful purposes in ML, including: [4] [5] [6] choosing model parameters ...

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A machine learning model is a type of mathematical model that, once "trained" on a given dataset, can be used to make predictions or classifications on new data. During training, a learning algorithm iteratively adjusts the model's internal parameters to minimize errors in its predictions. [ 84 ]

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Illustration of training a Random Forest model. The training dataset (in this case, of 250 rows and 100 columns) is randomly sampled with replacement n times. Then, a decision tree is trained on each sample. Finally, for prediction, the results of all n trees are aggregated to produce a final decision.

  8. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    GE Healthcare used TensorFlow to increase the speed and accuracy of MRIs in identifying specific body parts. [74] Google used TensorFlow to create DermAssist, a free mobile application that allows users to take pictures of their skin and identify potential health complications. [ 75 ]

  9. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity, the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train the model. In general, as we increase the number of tunable parameters in a model, it becomes more ...