enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stopping time - Wikipedia

    en.wikipedia.org/wiki/Stopping_time

    Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...

  3. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .

  4. Markov renewal process - Wikipedia

    en.wikipedia.org/wiki/Markov_renewal_process

    A semi-Markov process (defined in the above bullet point) in which all the holding times are exponentially distributed is called a continuous-time Markov chain. In other words, if the inter-arrival times are exponentially distributed and if the waiting time in a state and the next state reached are independent, we have a continuous-time Markov ...

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...

  6. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    The Brownian motion process and the Poisson process (in one dimension) are both examples of Markov processes [193] in continuous time, while random walks on the integers and the gambler's ruin problem are examples of Markov processes in discrete time. [194] [195] A Markov chain is a type of Markov process that has either discrete state space or ...

  7. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In a Markov chain, state depends only on the previous state in time, whereas in a Markov random field, each state depends on its neighbors in any of multiple directions. A Markov random field may be visualized as a field or graph of random variables, where the distribution of each random variable depends on the neighboring variables with which ...

  8. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is

  9. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]