enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    This simple formula generalizes to define moment of inertia for an arbitrarily shaped body as the sum of all the elemental point masses dm each multiplied by the square of its perpendicular distance r to an axis k. An arbitrary object's moment of inertia thus depends on the spatial distribution of its mass.

  4. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For an object to be in static equilibrium, not only must the sum of the forces be zero, but also the sum of the torques (moments) about any point. For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: Σ H = 0 and Σ V = 0 , and the torque a third equation: Σ τ = 0 .

  5. Moment (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(mathematics)

    In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.

  6. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  7. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Similarly, for a point mass the moment of inertia is defined as, = where is the radius of the point mass from the center of rotation, and for any collection of particles as the sum, =. Angular momentum's dependence on position and shape is reflected in its units versus linear momentum: kg⋅m 2 /s or N⋅m⋅s for angular momentum versus kg⋅m ...

  8. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  9. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    The left hand side of the equation—which includes the sum of external forces, and the sum of external moments about P—describes a spatial wrench, see screw theory. The inertial terms are contained in the spatial inertia matrix