Search results
Results from the WOW.Com Content Network
Copper(I) iodide: CuI Iodide (hydroiodic acid) Copper(I) cyanide: ... Chemical Formula Anion Image copper(I,II) sulfite dihydrate (Chevreul's salt) Cu 3 (SO 3) 2 ·2H 2 O
Copper(I) iodide can be prepared by heating iodine and copper in concentrated hydroiodic acid. [9] In the laboratory however, copper(I) iodide is prepared by simply mixing an aqueous solution of potassium iodide and a soluble copper(II) salt such as copper(II) sulfate. [4] 2 Cu 2+ + 4 I − → 2 CuI + I 2
Among the numerous copper sulfides, important examples include copper(I) sulfide and copper(II) sulfide. [citation needed] Cuprous halides with fluorine, chlorine, bromine, and iodine are known, as are cupric halides with fluorine, chlorine, and bromine. Attempts to prepare copper(II) iodide yield only copper(I) iodide and iodine. [1]
Many other oxyanions form complexes; these include copper(II) acetate, copper(II) nitrate, and copper(II) carbonate. Copper(II) sulfate forms a blue crystalline pentahydrate, the most familiar copper compound in the laboratory. It is used in a fungicide called the Bordeaux mixture. [67] Ball-and-stick model of the complex [Cu(NH 3) 4 (H 2 O) 2 ...
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
It can be formed by heating copper in air at around 300–800 °C: 2 Cu + O 2 → 2 CuO. For laboratory uses, copper(II) oxide is conveniently prepared by pyrolysis of copper(II) nitrate or basic copper(II) carbonate: [4] 2 Cu(NO 3) 2 → 2 CuO + 4 NO 2 + O 2 (180°C) Cu 2 (OH) 2 CO 3 → 2 CuO + CO 2 + H 2 O. Dehydration of cupric hydroxide ...
The low solubility of silver iodide and lead iodide reflects the covalent character of these metal iodides. A test for the presence of iodide ions is the formation of yellow precipitates of these compounds upon treatment of a solution of silver nitrate or lead(II) nitrate. [2] Aqueous solutions of iodide salts dissolve iodine better than pure ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.