enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.

  4. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    An open source computational geometry package which includes a quadratic programming solver. CPLEX: Popular solver with an API (C, C++, Java, .Net, Python, Matlab and R). Free for academics. Excel Solver Function: A nonlinear solver adjusted to spreadsheets in which function evaluations are based on the recalculating cells.

  5. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    As well as offering an interface to HiGHS, the JuMP modelling language for Julia [16] also describes the specific use of HiGHS in its user documentation. [17] The MIP solver in the NAG library is based on HiGHS , [18] and HiGHS is the default LP and MIP solver in the MathWorks Optimization Toolbox . [19]

  6. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    The idea to combine the bisection method with the secant method goes back to Dekker (1969).. Suppose that we want to solve the equation f(x) = 0.As with the bisection method, we need to initialize Dekker's method with two points, say a 0 and b 0, such that f(a 0) and f(b 0) have opposite signs.

  7. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, [1] [2] who programmed it on the Z4, [3] and extensively researched it. [4] [5] The biconjugate gradient method provides a generalization to non-symmetric matrices.

  8. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    "The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF).

  9. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.