enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    In quantum neural networks programmed on gate-model quantum computers, based on quantum perceptrons instead of variational quantum circuits, the non-linearity of the activation function can be implemented with no need of measuring the output of each perceptron at each layer.

  3. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state. On the contrary, BRNNs do not require their input data to be fixed. Moreover, their future input information is reachable from the current state. [2] BRNN are especially useful when the context of the input ...

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  5. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    It was one of the first deep learning methods, used to train an eight-layer neural net in 1971. [14] [15] [16] In 1967, Shun'ichi Amari reported [17] the first multilayered neural network trained by stochastic gradient descent, was able to classify non-linearily separable pattern classes. Amari's student Saito conducted the computer experiments ...

  6. Time delay neural network - Wikipedia

    en.wikipedia.org/wiki/Time_delay_neural_network

    Time delay neural network (TDNN) [1] is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network. Shift-invariant classification means that the classifier does not require explicit segmentation prior to classification.

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks , which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series .

  8. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    In 1989, Dean A. Pomerleau published ALVINN, a neural network trained to drive autonomously using backpropagation. [44] The LeNet was published in 1989 to recognize handwritten zip codes. In 1992, TD-Gammon achieved top human level play in backgammon. It was a reinforcement learning agent with a neural network with two layers, trained by ...

  9. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Designed to enable fast experimentation with deep neural networks, Keras focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System), [ 5 ] and its primary author and maintainer is François Chollet , a Google engineer.