enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    Artificial neural network architectures are based on inputs multiplied by weights to obtain outputs (inputs-to-output): feedforward. [2] Recurrent neural networks, or neural networks with loops allow information from later processing stages to feed back to earlier stages for sequence processing. [3]

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  4. Pooling layer - Wikipedia

    en.wikipedia.org/wiki/Pooling_layer

    In neural networks, a pooling layer is a kind of network layer that downsamples and aggregates information that is dispersed among many vectors into fewer vectors. [1] It has several uses. It removes redundant information, reducing the amount of computation and memory required, makes the model more robust to small variations in the input, and ...

  5. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    While early artificial neural networks were physical machines, [3] today they are almost always implemented in software. Neurons in an artificial neural network are usually arranged into layers, with information passing from the first layer (the input layer) through one or more intermediate layers (the hidden layers) to the final layer (the ...

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A probabilistic neural network (PNN) is a four-layer feedforward neural network. The layers are Input, hidden pattern/summation, and output. In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.

  7. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    For example, in CIFAR-10, images are only of size 32×32×3 (32 wide, 32 high, 3 color channels), so a single fully connected neuron in the first hidden layer of a regular neural network would have 32*32*3 = 3,072 weights. A 200×200 image, however, would lead to neurons that have 200*200*3 = 120,000 weights.

  8. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    It was one of the first deep learning methods, used to train an eight-layer neural net in 1971. [14] [15] [16] In 1967, Shun'ichi Amari reported [17] the first multilayered neural network trained by stochastic gradient descent, was able to classify non-linearily separable pattern classes. Amari's student Saito conducted the computer experiments ...

  9. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem . The identity activation function does not satisfy this property.