Search results
Results from the WOW.Com Content Network
Any conic section can be defined as the locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the eccentricity, commonly denoted as e. The eccentricity can also be defined in terms of the intersection of a plane and a double-napped cone associated with the conic section.
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
When the directrix has the property that the angle it subtends from the apex is exactly , then each nappe of the conical surface, including the apex, is a developable surface. [ 8 ] A cylindrical surface can be viewed as a limiting case of a conical surface whose apex is moved off to infinity in a particular direction.
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
The directrix of a conic section can be found using Dandelin's construction. Each Dandelin sphere intersects the cone at a circle; let both of these circles define their own planes. The intersections of these two parallel planes with the conic section's plane will be two parallel lines; these lines are the directrices of the conic section.
If a right section of a cylinder is a circle then the cylinder is a circular cylinder. In more generality, if a right section of a cylinder is a conic section (parabola, ellipse, hyperbola) then the solid cylinder is said to be parabolic, elliptic and hyperbolic, respectively. Cylindric sections of a right circular cylinder
The perimeter of the base of a cone is called the "directrix", and each of the line segments between the directrix and apex is a "generatrix" or "generating line" of the lateral surface. (For the connection between this sense of the term "directrix" and the directrix of a conic section, see Dandelin spheres.)
An angled cross section of a right circular cylinder is also an ellipse. An ellipse may also be defined in terms of one focal point and a line outside the ellipse called the directrix: for all points on the ellipse, the ratio between the distance to the focus and the distance to the directrix is a