enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"

  3. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]

  4. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  5. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  6. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    Congruence classes and factor monoids are the objects of study in string rewriting systems. A nuclear congruence on S is one that is the kernel of an endomorphism of S. [6] A semigroup S satisfies the maximal condition on congruences if any family of congruences on S, ordered by inclusion, has a maximal element.

  7. Transformation semigroup - Wikipedia

    en.wikipedia.org/wiki/Transformation_semigroup

    In group theory, Cayley's theorem asserts that any group G is isomorphic to a subgroup of the symmetric group of G (regarded as a set), so that G is a permutation group.This theorem generalizes straightforwardly to monoids: any monoid M is a transformation monoid of its underlying set, via the action given by left (or right) multiplication.

  8. Shadowgraph - Wikipedia

    en.wikipedia.org/wiki/Shadowgraph

    Shadowgraph is an optical method that reveals non-uniformities in transparent media like air, water, or glass. It is related to, but simpler than, the schlieren and schlieren photography methods that perform a similar function. Shadowgraph is a type of flow visualisation.

  9. Flow network - Wikipedia

    en.wikipedia.org/wiki/Flow_network

    A feasible flow, or just a flow, is a pseudo-flow that, for all v ∈ V \{s, t}, satisfies the additional constraint: Flow conservation constraint : The total net flow entering a node v is zero for all nodes in the network except the source s {\displaystyle s} and the sink t {\displaystyle t} , that is: x f ( v ) = 0 for all v ∈ V \{ s , t } .