enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. System F - Wikipedia

    en.wikipedia.org/wiki/System_F

    System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML.

  3. C++14 - Wikipedia

    en.wikipedia.org/wiki/C++14

    C++11 allowed lambda functions to deduce the return type based on the type of the expression given to the return statement. C++14 provides this ability to all functions. It also extends these facilities to lambda functions, allowing return type deduction for functions that are not of the form return expression;.

  4. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...

  5. Typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Typed_lambda_calculus

    A typed lambda calculus is a typed formalism that uses the lambda-symbol to denote anonymous function abstraction.In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below).

  6. Closure (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Closure_(computer_programming)

    The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).

  7. Higher-order programming - Wikipedia

    en.wikipedia.org/wiki/Higher-order_programming

    Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if ...

  8. Simply typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Simply_typed_lambda_calculus

    In the 1930s Alonzo Church sought to use the logistic method: [a] his lambda calculus, as a formal language based on symbolic expressions, consisted of a denumerably infinite series of axioms and variables, [b] but also a finite set of primitive symbols, [c] denoting abstraction and scope, as well as four constants: negation, disjunction, universal quantification, and selection respectively ...

  9. C++20 - Wikipedia

    en.wikipedia.org/wiki/C++20

    [=, this] as a lambda capture [14] template parameter lists on lambdas [15] three-way comparison using the "spaceship operator", operator <=> initialization of an additional variable within a range-based for statement [16] lambdas in unevaluated contexts [17] [18] default constructible and assignable stateless lambdas [17] [19]