Search results
Results from the WOW.Com Content Network
A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy.
In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system.Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement.
Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. [2] Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics.
In quantum physics, energy level splitting or a split in an energy level of a quantum system occurs when a perturbation changes the system. The perturbation changes the corresponding Hamiltonian and the outcome is change in eigenvalues ; several distinct energy levels emerge in place of the former degenerate (multi- state ) level.
Four quantum numbers can describe an electron energy level in a hydrogen-like atom completely: Principal quantum number (n) Azimuthal quantum number (ℓ) Magnetic quantum number (m ℓ) Spin quantum number (m s) These quantum numbers are also used in the classical description of nuclear particle states (e.g. protons and neutrons).
The most general form of a 2×2 Hermitian matrix such as the Hamiltonian of a two-state system is given by = (+), where ,, and γ are real numbers with units of energy. The allowed energy levels of the system, namely the eigenvalues of the Hamiltonian matrix, can be found in the usual way.
The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between different energy levels. With the development of modern quantum mechanics, the simple Bohr model was replaced with a more complex theory of atomic orbitals. However, the modern theory still requires the principal quantum ...
In quantum mechanics, the position of the ball is represented by a wave (called the wave function), with the real part shown in blue and the imaginary part shown in red. Some of the trajectories (such as C, D, E, and F) are standing waves (or "stationary states"). Each standing-wave frequency is proportional to a possible energy level of