enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

  4. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.

  5. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    A drawback of these coordinates is that the points with Cartesian coordinates (x,y) and (x,-y) have the same coordinates (,), so the conversion to Cartesian coordinates is not a function, but a multifunction. =

  6. Counting points on elliptic curves - Wikipedia

    en.wikipedia.org/wiki/Counting_points_on...

    An important aspect in the study of elliptic curves is devising effective ways of counting points on the curve.There have been several approaches to do so, and the algorithms devised have proved to be useful tools in the study of various fields such as number theory, and more recently in cryptography and Digital Signature Authentication (See elliptic curve cryptography and elliptic curve DSA).

  7. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    Here (X c, Y c) is the center of the ellipse, and φ is the angle between the x-axis and the major axis of the ellipse. Both parameterizations may be made rational by using the tangent half-angle formula and setting tan ⁡ t 2 = u . {\textstyle \tan {\frac {t}{2}}=u\,.}

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.

  9. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    The center of the ellipse is point O, and the focus is point F. Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the