enow.com Web Search

  1. Ads

    related to: explanation of transformer models

Search results

  1. Results from the WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.

  3. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model). Also in 2018, OpenAI published Improving Language Understanding by Generative Pre-Training , which introduced GPT-1 , the first in its GPT series.

  4. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [ 1 ] [ 2 ] It learns to represent text as a sequence of vectors using self-supervised learning .

  6. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT decomposes an input image into a series of patches (rather than text into tokens ), serializes each patch into a vector, and maps it to a smaller dimension with a single matrix multiplication .

  7. Transformer - Wikipedia

    en.wikipedia.org/wiki/Transformer

    In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits.A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core.

  8. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    The residual connection stabilizes the training and convergence of deep neural networks with hundreds of layers, and is a common motif in deep neural networks, such as transformer models (e.g., BERT, and GPT models such as ChatGPT), the AlphaGo Zero system, the AlphaStar system, and the AlphaFold system.

  9. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020. Like its predecessor, GPT-2 , it is a decoder-only [ 2 ] transformer model of deep neural network, which supersedes recurrence and convolution-based architectures with a technique known as " attention ". [ 3 ]

  1. Ads

    related to: explanation of transformer models