Ads
related to: explanation of transformer modelsautomationdirect.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.
That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model). Also in 2018, OpenAI published Improving Language Understanding by Generative Pre-Training , which introduced GPT-1 , the first in its GPT series.
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [ 1 ] [ 2 ] It learns to represent text as a sequence of vectors using self-supervised learning .
A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT decomposes an input image into a series of patches (rather than text into tokens ), serializes each patch into a vector, and maps it to a smaller dimension with a single matrix multiplication .
In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits.A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core.
The residual connection stabilizes the training and convergence of deep neural networks with hundreds of layers, and is a common motif in deep neural networks, such as transformer models (e.g., BERT, and GPT models such as ChatGPT), the AlphaGo Zero system, the AlphaStar system, and the AlphaFold system.
Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020. Like its predecessor, GPT-2 , it is a decoder-only [ 2 ] transformer model of deep neural network, which supersedes recurrence and convolution-based architectures with a technique known as " attention ". [ 3 ]
Ads
related to: explanation of transformer modelsautomationdirect.com has been visited by 10K+ users in the past month