enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is

  3. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In the former case, the orbit is called stable; in the latter case, it is called asymptotically stable and the given orbit is said to be attracting. An equilibrium solution f e {\displaystyle f_{e}} to an autonomous system of first order ordinary differential equations is called:

  4. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis). The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.

  5. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    A matrix () is called a fundamental matrix solution if the columns form a basis of the solution set. A matrix Φ ( t ) {\displaystyle \Phi (t)} is called a principal fundamental matrix solution if all columns are linearly independent solutions and there exists t 0 {\displaystyle t_{0}} such that Φ ( t 0 ) {\displaystyle \Phi (t_{0})} is the ...

  6. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.

  7. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...

  8. Lax equivalence theorem - Wikipedia

    en.wikipedia.org/wiki/Lax_equivalence_theorem

    Stability in this context means that a matrix norm of the matrix used in the iteration is at most unity, called (practical) Lax–Richtmyer stability. [2] Often a von Neumann stability analysis is substituted for convenience, although von Neumann stability only implies Lax–Richtmyer stability in certain cases. This theorem is due to Peter Lax.

  9. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    Stability and natural response characteristics of a continuous-time LTI system (i.e., linear with matrices that are constant with respect to time) can be studied from the eigenvalues of the matrix . The stability of a time-invariant state-space model can be determined by looking at the system's transfer function in factored form.