Search results
Results from the WOW.Com Content Network
The importance in probability theory of "stability" and of the stable family of probability distributions is that they are "attractors" for properly normed sums of independent and identically distributed random variables. Important special cases of stable distributions are the normal distribution, the Cauchy distribution and the Lévy distribution.
The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. [ 1 ] [ 2 ] Of the four parameters defining the family, most attention has been focused on the stability parameter, α {\displaystyle \alpha } (see panel).
A matrix () is called a fundamental matrix solution if the columns form a basis of the solution set. A matrix Φ ( t ) {\displaystyle \Phi (t)} is called a principal fundamental matrix solution if all columns are linearly independent solutions and there exists t 0 {\displaystyle t_{0}} such that Φ ( t 0 ) {\displaystyle \Phi (t_{0})} is the ...
Stability, also known as algorithmic stability, is a notion in computational learning theory of how a machine learning algorithm output is changed with small perturbations to its inputs. A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly.
Stability diagram classifying Poincaré maps of linear autonomous system ′ =, as stable or unstable according to their features. Stability generally increases to the left of the diagram. [ 1 ] Some sink, source or node are equilibrium points .
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...