Search results
Results from the WOW.Com Content Network
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
In physics, the Fermi–Pasta–Ulam–Tsingou (FPUT) problem or formerly the Fermi–Pasta–Ulam problem was the apparent paradox in chaos theory that many complicated enough physical systems exhibited almost exactly periodic behavior – called Fermi–Pasta–Ulam–Tsingou recurrence (or Fermi–Pasta–Ulam recurrence) – instead of the expected ergodic behavior.
This space-dependence is called a normal mode. Usually, for problems with continuous dependence on (x, y, z) there is no single or finite number of normal modes, but there are infinitely many normal modes. If the problem is bounded (i.e. it is defined on a finite section of space) there are countably many normal modes (usually numbered n = 1, 2 ...
These normal modes have (slightly) different frequencies because the second involves the (weak) spring while the first does not. The initial state of the two-pendulum system is a combination of both normal modes. Over time, these normal modes drift out of phase, and this is seen as a transfer of motion from the first pendulum to the second.
Normal-form maps for intermittency (Types I, II and III) Polynom Type-A fractal map [45] continuous: real: 3: 3: Polynom Type-B fractal map [46] continuous: real: 3: 6: Polynom Type-C fractal map [47] continuous: real: 3: 18: Pulsed rotor: Quadrup-Two orbit fractal [48] discrete: real: 2: 3: Quasiperiodicity map: Mikhail Anatoly chaotic ...
An example of a generalized coordinate would be to describe the position of a pendulum using the angle of the pendulum relative to vertical, rather than by the x and y position of the pendulum. Although there may be many possible choices for generalized coordinates for a physical system, they are generally selected to simplify calculations ...
The equation describes the motion of a damped oscillator with a more complex potential than in simple harmonic motion (which corresponds to the case = =); in physical terms, it models, for example, an elastic pendulum whose spring's stiffness does not exactly obey Hooke's law.
The mathematical definition of ergodicity aims to capture ordinary every-day ideas about randomness.This includes ideas about systems that move in such a way as to (eventually) fill up all of space, such as diffusion and Brownian motion, as well as common-sense notions of mixing, such as mixing paints, drinks, cooking ingredients, industrial process mixing, smoke in a smoke-filled room, the ...