enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  3. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    Variational free energy is an information-theoretic functional and is distinct from thermodynamic (Helmholtz) free energy. [34] However, the complexity term of variational free energy shares the same fixed point as Helmholtz free energy (under the assumption the system is thermodynamically closed but not isolated).

  4. Bayesian approaches to brain function - Wikipedia

    en.wikipedia.org/wiki/Bayesian_approaches_to...

    Using variational Bayesian methods, it can be shown how internal models of the world are updated by sensory information to minimize free energy or the discrepancy between sensory input and predictions of that input. This can be cast (in neurobiologically plausible terms) as predictive coding or, more generally, Bayesian filtering.

  5. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  6. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    In numerous publications on Bayesian experimental design, it is (often implicitly) assumed that all posterior probabilities will be approximately normal. This allows for the expected utility to be calculated using linear theory, averaging over the space of model parameters. [2]

  7. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  8. Belief propagation - Wikipedia

    en.wikipedia.org/wiki/Belief_propagation

    Belief propagation, also known as sum–product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node (or variable), conditional on any observed nodes (or variables).

  9. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    Model building; Conjugate prior; Linear regression; Empirical Bayes; Hierarchical model; Posterior approximation; Markov chain Monte Carlo; Laplace's approximation; Integrated nested Laplace approximations; Variational inference; Approximate Bayesian computation; Estimators; Bayesian estimator; Credible interval; Maximum a posteriori estimation ...