Search results
Results from the WOW.Com Content Network
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e. surjective). Not translatable (without circumlocutions) to some languages other than English.
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
The Conjecture lives in the math discipline known as Dynamical Systems, or the study of situations that change over time in semi-predictable ways. It looks like a simple, innocuous question, but ...
Integration of a function of one variable often involves a constant of integration. This arises due to the fact that the integral is the inverse (opposite) of the derivative meaning that the aim of integration is to recover the original function before differentiation. The derivative of a constant function is zero, as noted above, and the ...
For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .
Is a process or a relation that associates each element x of a set X, the domain of the function, to a single element y of another set Y (possibly the same set), the codomain of the function. If the function is called f, this relation is denoted y = f (x) (read f of x), the element x is the argument or input of the function, and y is the value ...
In stochastic analysis a random process is a predictable process if it is possible to know the next state from the present time. The branch of mathematics known as Chaos Theory focuses on the behavior of systems that are highly sensitive to initial conditions. It suggests that a small change in an initial condition can completely alter the ...