enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition ...

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as. which is the shorthand way of writing the statement that m divides ...

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In fact, x ≡ b m n −1 m + a n m −1 n (mod mn) where m n −1 is the inverse of m modulo n and n m −1 is the inverse of n modulo m. Lagrange's theorem: The congruence f (x) ≡ 0 (mod p), where p is prime, and f (x) = a 0 x m + ... + a m is a polynomial with integer coefficients such that a 00 (mod p), has at most m roots.

  5. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    The quadratic excess E ( p) is the number of quadratic residues on the range (0, p /2) minus the number in the range ( p /2, p) (sequence A178153 in the OEIS ). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p − r.

  6. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    We can apply the general Hensel's lemma three times depending on the value of c mod 27: if c ≡ 1 mod 27 then use a = 1, if c ≡ 10 mod 27 then use a = 4 (since 4 is a root of f(x) mod 27), and if c ≡ 19 mod 27 then use a = 7. (It is not true that every c ≡ 1 mod 3 is a 3-adic cube, e.g., 4 is not a 3-adic cube since it is not a cube mod 9.)

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    Modulo. In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the modulus of the operation). Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the ...

  8. Method of successive substitution - Wikipedia

    en.wikipedia.org/wiki/Method_of_successive...

    x1 (mod 2) x ≡ 2 (mod 3) x ≡ 3 (mod 5) x4 (mod 11) In order to proceed in finding an expression that represents all the solutions that satisfies this system of linear congruences, it is important to know that a (mod b) has an analogous identity: a (mod b) ⇔ bk + a, ∀k ∈ Z, where k is an arbitrary constant. PROCEDURE. 1.

  9. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = be mod m. From the definition of division, it follows that 0 ≤ c < m . For example, given b = 5, e = 3 and m = 13, dividing 53 = 125 by 13 leaves a remainder of c = 8 .