Search results
Results from the WOW.Com Content Network
A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n, then the probability that it moves to state x at time n + 1 depends only on the ...
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).
A number of different Markov models of DNA sequence evolution have been proposed. [1] These substitution models differ in terms of the parameters used to describe the rates at which one nucleotide replaces another during evolution. These models are frequently used in molecular phylogenetic analyses.
In biology, a substitution model, also called models of sequence evolution, are Markov models that describe changes over evolutionary time. These models describe evolutionary changes in macromolecules, such as DNA sequences or protein sequences, that can be represented as sequence of symbols (e.g., A, C, G, and T in the case of DNA or the 20 "standard" proteinogenic amino acids in the case of ...
A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless ...
Markov-chains have been used as a forecasting methods for several topics, for example price trends, [8] wind power [9] and solar irradiance. [10] The Markov-chain forecasting models utilize a variety of different settings, from discretizing the time-series [ 9 ] to hidden Markov-models combined with wavelets [ 8 ] and the Markov-chain mixture ...
Intuitively, a stochastic matrix represents a Markov chain; the application of the stochastic matrix to a probability distribution redistributes the probability mass of the original distribution while preserving its total mass. If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain.
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,