enow.com Web Search

  1. Ad

    related to: fixed point method calculator calculus 2 answers examples list

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  3. Fixed-point computation - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_computation

    X is a fixed-point of if and only if x is a root of , and x is an ε-residual fixed-point of if and only if x is an ε-root of . Chen and Deng [ 18 ] show that the discrete variants of these problems are computationally equivalent: both problems require Θ ( n d − 1 ) {\displaystyle \Theta (n^{d-1})} function evaluations.

  4. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  5. Banach fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Banach_fixed-point_theorem

    In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.

  6. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    The function () = + (shown in red) has the fixed points 0, 1, and 2. In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed ...

  7. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Let c = (a +b)/2 be the middle of the interval (the midpoint or the point that bisects the interval). Then either f(a) and f(c), or f(c) and f(b) have opposite signs, and one has divided by two the size of the interval. Although the bisection method is robust, it gains one and only one bit of accuracy with each iteration.

  8. Fixed-point theorems in infinite-dimensional spaces - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorems_in...

    Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point. Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has ...

  9. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    The Kakutani fixed point theorem generalizes the Brouwer fixed-point theorem in a different direction: it stays in R n, but considers upper hemi-continuous set-valued functions (functions that assign to each point of the set a subset of the set). It also requires compactness and convexity of the set.

  1. Ad

    related to: fixed point method calculator calculus 2 answers examples list