Search results
Results from the WOW.Com Content Network
It is most often used to model resonances (unstable particles) in high-energy physics. In this case, E is the center-of-mass energy that produces the resonance, M is the mass of the resonance, and Γ is the resonance width (or decay width), related to its mean lifetime according to τ = 1 / Γ. (With units included, the formula is τ = ħ / Γ.)
Step 4. Compute probability of hopping from current state to all other states. Generate a random number, and determine whether a switch should take place. If a switch does occur, change velocities to conserve energy. Go back to step 2, till trajectories have been evolved for the desired time.
Roughly, the fluctuation theorem relates to the probability distribution of the time-averaged irreversible entropy production, denoted ¯.The theorem states that, in systems away from equilibrium over a finite time t, the ratio between the probability that ¯ takes on a value A and the probability that it takes the opposite value, −A, will be exponential in At.
Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. [2] [3] It is named after Friedrich Paschen who discovered it empirically in 1889. [4]
The concept of probability current is also used outside of quantum mechanics, when dealing with probability density functions that change over time, for instance in Brownian motion and the Fokker–Planck equation. [1] The relativistic equivalent of the probability current is known as the probability four-current.
The solid body shows the places where the electron's probability density is above a certain value (here 0.02 nm −3): this is calculated from the probability amplitude. The hue on the colored surface shows the complex phase of the wave function. In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour ...
3D visualization of quantum fluctuations of the quantum chromodynamics (QCD) vacuum [1]. In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, [2] as prescribed by Werner Heisenberg's uncertainty principle.
In relativistic quantum mechanics, the Klein paradox (also known as Klein tunneling) is a quantum phenomenon related to particles encountering high-energy potential barriers. It is named after physicist Oskar Klein who discovered in 1929. [ 1 ]