Search results
Results from the WOW.Com Content Network
When a column contains repeated values, sorting the column should maintain the original order of rows within each subset that shares the same value. This is known as stable sorting. As a result, multi-key sorting (sorting by primary, secondary, tertiary keys, etc.) can be achieved by sorting the least significant key first and the most ...
If the sort key values are totally ordered, the sort key defines a weak order of the items: items with the same sort key are equivalent with respect to sorting. See also stable sorting. If different items have different sort key values then this defines a unique order of the items. Workers sorting parcels in a postal facility
For problem instances in which the maximum key value is significantly smaller than the number of items, counting sort can be highly space-efficient, as the only storage it uses other than its input and output arrays is the Count array which uses space O(k). [5]
Sorting may refer to: Help:Sortable tables, for editing tables which can be sorted by viewers; Help:Category § Sorting category pages, for documentation of how ...
To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.
Radix sort is an algorithm that sorts numbers by processing individual digits. n numbers consisting of k digits each are sorted in O(n · k) time. Radix sort can process digits of each number either starting from the least significant digit (LSD) or starting from the most significant digit (MSD). The LSD algorithm first sorts the list by the ...
Bucket sort can be seen as a generalization of counting sort; in fact, if each bucket has size 1 then bucket sort degenerates to counting sort. The variable bucket size of bucket sort allows it to use O(n) memory instead of O(M) memory, where M is the number of distinct values; in exchange, it gives up counting sort's O(n + M) worst-case behavior.
procedure heapsort(a, count) is input: an unordered array a of length count (Build the heap in array a so that largest value is at the root) heapify(a, count) (The following loop maintains the invariants that a[0:end−1] is a heap, and every element a[end:count−1] beyond end is greater than everything before it, i.e. a[end:count−1] is in ...