Search results
Results from the WOW.Com Content Network
The general definition of a qubit as the quantum state of a two-level quantum system.In quantum computing, a qubit (/ ˈ k juː b ɪ t /) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device.
The approach of topological qubits, which takes advantage of topological effects in quantum mechanics, has been proposed as needing many fewer or even a single physical qubit per logical qubit. [10]
Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a machine able to perform quantum circuits on a certain number of qubits. Quantum networks work in a similar way to classical networks.
In matters relating to quantum information theory, it is convenient to work with the simplest possible unit of information: the two-state system of the qubit.The qubit functions as the quantum analog of the classic computational part, the bit, as it can have a measurement value of both a 0 and a 1, whereas the classical bit can only be measured as a 0 or a 1.
The threshold theorem shows how increasing the number of qubits can mitigate errors, [45] yet fully fault-tolerant quantum computing remains "a rather distant dream". [46] According to some researchers, noisy intermediate-scale quantum ( NISQ ) machines may have specialized uses in the near future, but noise in quantum gates limits their ...
Global single qubit gates on all the atoms can be done either by applying a microwave field for qubits encoded in the Hyperfine manifold such as Rb and Cs or by applying an RF magnetic field for qubits encoded in the nuclear spin such as Yb and Sr. Focused laser beams can be used to do single-site one qubit rotation using a lambda-type three level Raman scheme (see figure).
Time-bin qubits do not suffer from depolarization or polarization mode-dispersion, making them better suited to fiber optics applications than polarization encoding. Photon loss is easily detectable since the absence of photons does not correspond to an allowed state, making it better suited than a photon-number based encoding.
This qubit virtualization system was used to create 4 logical qubits with 30 of the 32 qubits on Quantinuum's trapped-ion hardware. The system uses an active syndrome extraction technique to diagnose errors and correct them while calculations are underway without destroying the logical qubits.