enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    In 1964, Pound and J. L. Snider measured a result within 1% of the value predicted by gravitational time dilation. [36] (See Pound–Rebka experiment) In 2010, gravitational time dilation was measured at the Earth's surface with a height difference of only one meter, using optical atomic clocks. [26]

  4. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    Albert Einstein (1907) [H 13] studied the effects within a uniformly accelerated frame, obtaining equations for coordinate dependent time dilation and speed of light equivalent to , and in order to make the formulas independent of the observer's origin, he obtained time dilation in formal agreement with Radar coordinates.

  5. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations. The history of an object's location through time traces out a line or curve on a spacetime diagram, referred to as the object's world line .

  6. Shapiro time delay - Wikipedia

    en.wikipedia.org/wiki/Shapiro_time_delay

    The measured elapsed time of a light signal in a gravitational field is longer than it would be without the field, and for moderate-strength nearly static fields the difference is directly proportional to the classical gravitational potential, precisely as given by standard gravitational time dilation formulas.

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a

  8. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as =, where G is the gravitational constant, M is the object mass, and c is the speed of light.

  9. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.