Search results
Results from the WOW.Com Content Network
For free flow, the equation to determine the flow rate is simply Q = CH a n where: Q is flowing rate (ft 3 /s) C is the free-flow coefficient for the flume (see Table 1 below) H a is the head at the primary point of measurement (ft) (See Figure 1 above) n varies with flume size (see Table 1 below) Parshall flume discharge table for free flow ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The flow table test or slump-flow test is a method to determine consistency of fresh concrete. Flow table test is also used to identify transportable moisture limit of solid bulk cargoes. [ 1 ] It is used primarily for assessing concrete that is too fluid (workable) to be measured using the slump test , because the concrete will not retain its ...
The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.
The tremie concrete placement method uses a vertical or nearly vertical pipe, through which concrete is placed by gravity feed below water level. [4]The lower end of the pipe is kept immersed in fresh concrete so that concrete rising from the bottom displaces the water above it, thus limiting washing out of the cement content of the fresh concrete at the exposed upper surface.
In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per ...
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.
It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as =, where Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water ...