Search results
Results from the WOW.Com Content Network
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
The main criticism to the ROC curve described in these studies regards the incorporation of areas with low sensitivity and low specificity (both lower than 0.5) for the calculation of the total area under the curve (AUC)., [19] as described in the plot on the right.
Area under the curve (receiver operating characteristic), a performance measure for binary classifiers Area under the curve (pharmacokinetics) , regarding plasma drug concentration-time curves Authentication Center in a GSM mobile phone network
Approximating the area under the curve y = x 2 over [0, 2] using the right Riemann sum. Notice that because the function is monotonically increasing, the right Riemann sum will always overestimate the area contributed by each term in the sum (and do so maximally).
The Partial Area Under the ROC Curve (pAUC) is a metric for the performance of binary classifier. It is computed based on the receiver operating characteristic (ROC) curve that illustrates the diagnostic ability of a given binary classifier system as its discrimination threshold is varied.
Area under the curve. Add languages. Add links. Article; Talk; English. Read; Edit; View history; Tools. ... Text is available under the Creative Commons Attribution ...
A 2016 Science paper reports that the trapezoid rule was in use in Babylon before 50 BCE for integrating the velocity of Jupiter along the ecliptic. [1]In 1994, a paper titled "A Mathematical Model for the Determination of Total Area Under Glucose Tolerance and Other Metabolic Curves" was published, only to be met with widespread criticism for rediscovering the Trapezoidal Rule and coining it ...
Toughness as defined by the area under the stress–strain curve for one unit volume of the material. In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. [1] Toughness is the strength with which the material opposes rupture.