Search results
Results from the WOW.Com Content Network
As with the other WEP variants, 24 bits of that is for the IV, leaving 128 or 232 bits for actual protection. These 128 or 232 bits are typically entered as 32 or 58 hexadecimal characters (4 bits × 32 + 24-bit IV = 152-bit WEP key, 4 bits × 58 + 24-bit IV = 256-bit WEP key). Most devices also allow the user to enter it as 16 or 29 ASCII ...
WEP used the RC4 algorithm for encrypting data, creating a unique key for each packet by combining a new Initialization Vector (IV) with a shared key (it has 40 bits of vectored key and 24 bits of random numbers). Decryption involved reversing this process, using the IV and the shared key to generate a key stream and decrypt the payload.
Some devices with dual-band wireless network connectivity do not allow the user to select the 2.4 GHz or 5 GHz band (or even a particular radio or SSID) when using Wi-Fi Protected Setup, unless the wireless access point has separate WPS button for each band or radio; however, a number of later wireless routers with multiple frequency bands and ...
As a result, only static WEP or WPA keys may be used in a WDS connection, including any STAs that associate to a WDS repeating AP. OpenWRT, a universal third party router firmware, supports WDS with WPA-PSK, WPA2-PSK, WPA-PSK/WPA2-PSK Mixed-Mode encryption modes. Recent Apple base stations allow WDS with WPA, though in some cases firmware ...
WEP was superseded in 2003 by WPA, a quick alternative at the time to improve security over WEP. The current standard is WPA2; [3] some hardware cannot support WPA2 without firmware upgrade or replacement. WPA2 uses an encryption device that encrypts the network with a 256-bit key; the longer key length improves security over WEP.
Important features of LEAP are dynamic WEP keys and mutual authentication (between a wireless client and a RADIUS server). LEAP allows for clients to re-authenticate frequently; upon each successful authentication, the clients acquire a new WEP key (with the hope that the WEP keys don't live long enough to be cracked).
The most common solution is wireless traffic encryption. Modern access points come with built-in encryption. The first generation encryption scheme, WEP, proved easy to crack; the second and third generation schemes, WPA and WPA2, are considered secure [7] if a strong enough password or passphrase is used.
IEEE 802.11i enhances IEEE 802.11-1999 by providing a Robust Security Network (RSN) with two new protocols: the four-way handshake and the group key handshake. These utilize the authentication services and port access control described in IEEE 802.1X to establish and change the appropriate cryptographic keys.