enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adenosine monophosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_monophosphate

    2 ADP → ATP + AMP. Or AMP may be produced by the hydrolysis of one high energy phosphate bond of ADP: ADP + H 2 O → AMP + P i. AMP can also be formed by hydrolysis of ATP into AMP and pyrophosphate: ATP + H 2 O → AMP + PP i. When RNA is broken down by living systems, nucleoside monophosphates, including adenosine monophosphate, are formed.

  3. Adenylylation - Wikipedia

    en.wikipedia.org/wiki/Adenylylation

    Adenylylation, [1] [2] more commonly known as AMPylation, is a process in which an adenosine monophosphate (AMP) molecule is covalently attached to the amino acid side chain of a protein. [3] This covalent addition of AMP to a hydroxyl side chain of the protein is a post-translational modification . [ 4 ]

  4. Purine nucleotide cycle - Wikipedia

    en.wikipedia.org/wiki/Purine_nucleotide_cycle

    Myogenic hyperuricemia, as a result of the purine nucleotide cycle running when ATP reservoirs in muscle cells are low (ADP > ATP), is a common pathophysiologic feature of glycogenoses such as GSD-III, GSD-V and GSD-VII, as they are metabolic myopathies which impair the ability of ATP (energy) production within muscle cells.

  5. Nucleic acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_metabolism

    In purine synthesis, PRPP is turned into inosine monophosphate, or IMP. Production of IMP from PRPP requires glutamine, glycine, aspartate, and 6 ATP, among other things. [1] IMP is then converted to AMP (adenosine monophosphate) using GTP and aspartate, which is converted into fumarate.

  6. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    Examples include ribonucleoside 2',3'-cyclic monophosphates which are isolatable intermediates, and ribonucleoside 3'-monophosphates which are end products of the hydrolysis of RNA by certain ribonucleases. Other variations include adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). [4]

  7. Phosphoric acids and phosphates - Wikipedia

    en.wikipedia.org/wiki/Phosphoric_acids_and...

    In the biochemistry of living organisms, there are many kinds of (mono)phosphate, diphosphate, and triphosphate compounds (essentially esters), many of which play a significant role in metabolism such as adenosine diphosphate (ADP) and triphosphate (ATP). Structure of a chiral phosphoric acid derived from BINOL. [8]

  8. ATP hydrolysis - Wikipedia

    en.wikipedia.org/wiki/ATP_hydrolysis

    Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.

  9. 3'-Phosphoadenosine-5'-phosphosulfate - Wikipedia

    en.wikipedia.org/wiki/3'-Phosphoadenosine-5...

    3′-Phosphoadenosine-5′-phosphosulfate (PAPS) is a derivative of adenosine monophosphate (AMP) that is phosphorylated at the 3′ position and has a sulfate group attached to the 5′ phosphate. It is the most common coenzyme in sulfotransferase reactions and hence part of sulfation pathways . [ 1 ]