enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ECC patents - Wikipedia

    en.wikipedia.org/wiki/ECC_patents

    For example, the OpenSSL team accepted an ECC patch only in 2005 (in OpenSSL version 0.9.8), despite the fact that it was submitted in 2002. According to Bruce Schneier as of May 31, 2007, "Certicom certainly can claim ownership of ECC. The algorithm was developed and patented by the company's founders, and the patents are well written and strong.

  3. Elliptic Curve Digital Signature Algorithm - Wikipedia

    en.wikipedia.org/wiki/Elliptic_Curve_Digital...

    As with elliptic-curve cryptography in general, the bit size of the private key believed to be needed for ECDSA is about twice the size of the security level, in bits. [1] For example, at a security level of 80 bits—meaning an attacker requires a maximum of about 2 80 {\displaystyle 2^{80}} operations to find the private key—the size of an ...

  4. Comparison of cryptography libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_cryptography...

    Table compares implementations of block ciphers. Block ciphers are defined as being deterministic and operating on a set number of bits (termed a block) using a symmetric key. Each block cipher can be broken up into the possible key sizes and block cipher modes it can be run with.

  5. Key generation - Wikipedia

    en.wikipedia.org/wiki/Key_generation

    Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can ...

  6. Elliptic-curve cryptography - Wikipedia

    en.wikipedia.org/wiki/Elliptic-curve_cryptography

    Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys to provide equivalent security, compared to cryptosystems based on modular exponentiation in Galois fields , such as the RSA cryptosystem and ElGamal cryptosystem .

  7. Curve25519 - Wikipedia

    en.wikipedia.org/wiki/Curve25519

    In cryptography, Curve25519 is an elliptic curve used in elliptic-curve cryptography (ECC) offering 128 bits of security (256-bit key size) and designed for use with the Elliptic-curve Diffie–Hellman (ECDH) key agreement scheme. It is one of the fastest curves in ECC, and is not covered by any known patents. [1]

  8. Message authentication code - Wikipedia

    en.wikipedia.org/wiki/Message_authentication_code

    G (key-generator) gives the key k on input 1 n, where n is the security parameter. S (signing) outputs a tag t on the key k and the input string x. V (verifying) outputs accepted or rejected on inputs: the key k, the string x and the tag t. S and V must satisfy the following: Pr [ k ← G(1 n), V( k, x, S(k, x) ) = accepted] = 1. [5]

  9. Public-key cryptography - Wikipedia

    en.wikipedia.org/wiki/Public-key_cryptography

    Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. [1] [2] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions.