Search results
Results from the WOW.Com Content Network
A phase diagram for a fictitious binary chemical mixture (with the two components denoted by A and B) used to depict the eutectic composition, temperature, and point. ( L denotes the liquid state.) A eutectic system or eutectic mixture ( / j uː ˈ t ɛ k t ɪ k / yoo- TEK -tik ) [ 1 ] is a type of a homogeneous mixture that has a melting point ...
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
A phase diagram for a binary system displaying a eutectic point. Other much more complex types of phase diagrams can be constructed, particularly when more than one pure component is present. In that case, concentration becomes an important variable. Phase diagrams with more than two dimensions can be constructed that show the effect of more ...
A binary phase diagram displaying solid solutions over the full range of relative concentrations. On a phase diagram a solid solution is represented by an area, often labeled with the structure type, which covers the compositional and temperature/pressure ranges. Where the end members are not isostructural there are likely to be two solid ...
No, you get a eutectic reaction if and only if you have phase separation in the solid state (either by a miscibility gap, due to intermediate phases, or due to unequal crystal lattices of the pure components) and a minimum in the liquidus line (which is often the case when there is an unmixing tendency, which will typically be more pronounced ...
A binary phase diagram showing the eutectic composition, eutectic temperature, and the eutectic point: Date: 25 December 2009, 02:07 (UTC) Source: Eutektikum_new.svg;
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
Figure 1: Melting point phase diagram (using the Schroeder – van Laar Equation) of a prototypical diastereomeric system. nb. utility in a solvent mediated crystallization implicitly assumes ideal behaviour (in that changing the solvent will not change the composition of the binary eutectic).