Search results
Results from the WOW.Com Content Network
Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.
This effect increases with lower mutation rate but decreases with higher recombination rate. [5] Purifying selection can be split into purging by non-random mating (assortative mating) and purging by genetic drift. Purging by genetic drift can remove primarily deeply recessive alleles, whereas natural selection can remove any type of ...
Positive effects of urban facilitation can occur when increased gene flow enables better adaptation and introduces beneficial alleles, and would ideally increase biodiversity. This has implications for conservation: for example, urban facilitation benefits an endangered species of tarantula and could help increase the population size.
In negative frequency-dependent selection, the fitness of a phenotype or genotype decreases as it becomes more common. This is an example of balancing selection. More generally, frequency-dependent selection includes when biological interactions make an individual's fitness depend on the frequencies of other phenotypes or genotypes in the ...
Once an allele becomes fixed, genetic drift comes to a halt, and the allele frequency cannot change unless a new allele is introduced in the population via mutation or gene flow. Thus even while genetic drift is a random, directionless process, it acts to eliminate genetic variation over time.
The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.
For example, if a population includes allele A with frequency equal to 20%, and allele a with frequency equal to 80%, there is an 80% chance that after an infinite number of generations a will be fixed at the locus (assuming genetic drift is the only operating evolutionary force).
The strong Allee effect is a demographic Allee effect with a critical population size or density. The weak Allee effect is a demographic Allee effect without a critical population size or density. The distinction between the two terms is based on whether or not the population in question exhibits a critical population size or density. A ...