Search results
Results from the WOW.Com Content Network
Consider the example of [5, 2, 3, 1, 0], following the scheme, after the first partition the array becomes [0, 2, 1, 3, 5], the "index" returned is 2, which is the number 1, when the real pivot, the one we chose to start the partition with was the number 3. With this example, we see how it is necessary to include the returned index of the ...
A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.
Sorting small arrays optimally (in the fewest comparisons and swaps) or fast (i.e. taking into account machine-specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
The Dutch national flag problem [1] is a computational problem proposed by Edsger Dijkstra. [2] The flag of the Netherlands consists of three colors: red, white, and blue. Given balls of these three colors arranged randomly in a line (it does not matter how many balls there are), the task is to arrange them such that all balls of the same color ...
qsort is a C standard library function that implements a sorting algorithm for arrays of arbitrary objects according to a user-provided comparison function. It is named after the "quicker sort" algorithm [1] (a quicksort variant due to R. S. Scowen), which was originally used to implement it in the Unix C library, although the C standard does not require it to implement quicksort.
In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list, also known as the kth order statistic.Like the related quicksort sorting algorithm, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm. [1]
The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort , merge sort ), multiplying large numbers (e.g., the Karatsuba algorithm ), finding the closest pair of points , syntactic ...
Multi-key quicksort, also known as three-way radix quicksort, [1] is an algorithm for sorting strings.This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort; [2]: 14 its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. [3]