Search results
Results from the WOW.Com Content Network
Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental ...
A regulatory sequence is a segment of a nucleic acid molecule which is capable of increasing or decreasing the expression of specific genes within an organism. Regulation of gene expression is an essential feature of all living organisms and viruses.
A regulator gene may encode a protein, or it may work at the level of RNA, as in the case of genes encoding microRNAs. An example of a regulator gene is a gene that codes for a repressor protein that inhibits the activity of an operator (a gene which binds repressor proteins thus inhibiting the translation of RNA to protein via RNA polymerase). [1]
The process of gene expression is used by all known life—eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea), and utilized by viruses—to generate the macromolecular machinery for life. In genetics, gene expression is the most fundamental level at which the genotype gives rise to the phenotype, i.e. observable ...
Structure of a gene regulatory network Control process of a gene regulatory network. A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell.
Trans-acting factors in alternative splicing in mRNA. Alternative splicing is a key mechanism that is involved in gene expression regulation. In the alternative splicing, trans-acting factors such as SR protein, hnRNP and snRNP control this mechanism by acting in trans. SR protein promotes the spliceosome assembly by interacting with snRNP(e.g. U1, U2) and splicing factors(e.g. U2AF65), and it ...
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
Ribosome-mediated attenuation is a gene expression mechanism in which a transcriptional termination signal is regulated by translation. [ 15 ] [ 16 ] [ 17 ] Attenuation occurs at the start of some prokaryotic operons at sequences called "attenuators", which have been identified in operons encoding amino acid biosynthesis enzymes, pyrimidine ...