Search results
Results from the WOW.Com Content Network
A right bundle branch block (RBBB) is a heart block in the right bundle branch of the electrical conduction system. [1] During a right bundle branch block, the right ventricle is not directly activated by impulses traveling through the right bundle branch. However, the left bundle branch still normally activates the left ventricle.
This means by definition that the connection ∇ is flat there. In mentioned Aharonov–Bohm effect, however, the connection depends on the magnetic field through the tube since the holonomy along a non-contractible curve encircling the tube is the magnetic flux through the tube in the proper units. This can be detected quantum-mechanically ...
Because exchange of W bosons involves a transfer of electric charge (as well as a transfer of weak isospin, while weak hypercharge is not transferred), it is known as "charged current". By contrast, exchanges of Z bosons involve no transfer of electrical charge, so it is referred to as a "neutral current". In the latter case, the word "current ...
A right bundle branch block typically causes prolongation of the last part of the QRS complex and may shift the heart's electrical axis slightly to the right. The ECG will show a terminal R wave in lead V1 and a slurred S wave in lead I. Left bundle branch block widens the entire QRS, and in most cases shifts the heart's electrical axis to the ...
Charge conjugation occurs as a symmetry in three different but closely related settings: a symmetry of the (classical, non-quantized) solutions of several notable differential equations, including the Klein–Gordon equation and the Dirac equation, a symmetry of the corresponding quantum fields, and in a general setting, a symmetry in (pseudo-)Riemannian geometry.
Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport.
An important definition is the barred fermion field ¯, which is defined to be †, where † denotes the Hermitian adjoint of ψ, and γ 0 is the zeroth gamma matrix. If ψ is thought of as an n × 1 matrix then ψ ¯ {\displaystyle {\bar {\psi }}} should be thought of as a 1 × n matrix .
Charge ordering (CO) is a (first- or second-order) phase transition occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. Due to the strong interaction between electrons, charges are localized on different sites leading to a disproportionation and an ordered superlattice .